
Developing for Africa - the
challenges of building apps
for the African environment

Jonathan Haddock
Code Harbour - 2nd October 2019

https://blog.jonsdocs.org.uk

@joncojonathan

I’ve been developing applications since I was about 16, generally focussed on web
applications. I tend to develop in PHP but used to dabble in Microsoft Quick BASIC
(years ago) and wrote a proof of concept Android app for my MSc some years ago.

Since working on the eVitabu project with a local charity I’ve increased the amount of
Android / Java development I do. eVitabu is the first tool I’ve written that has more
than 10 users.

The problem

● APF is a Christian charity focussed on transforming
lives in Africa

● Training material was circulated on paper
○ Farming

○ Health

○ Christian studies

○ Financial suggestions

While the charity has a strong Christian background and ethos, it doesn’t only
circulate Christian or Biblical teaching materials although Christianity may run through
the materials as a theme.

You can read more about African Pastors Fellowship at
https://www.africanpastors.org/ .

https://www.africanpastors.org/

The problem

● Paper is expensive to print and ship
● Updates don’t happen - once printed there’s no

change
● Economies of scale meant many copies of documents

○ Sometimes in very obscure languages

● Intra-Africa distribution difficult

There are still many printed documents in storage in Africa. Some are likely no longer
relevant or would benefit from being updated.

Distribution networks inside Africa can be expensive, with smaller work being done by
bike or by hiring motorbike based couriers. Having to deliver paper documents to
individual partners is costly and time inefficient given the distances involved. The
other option is that partners travel to a centralised depot to collect resources - even
more time inefficient and many do not have transport or the funds to procure it.

APF’s partners are based all over sub-Saharan Africa, with contacts in Uganda,
Kenya, Malawi, Rwanda and elsewhere. Getting everyone together does not happen
often, and it was a real privilege to be at the launch conference with so many
partners, from so many places, in March 2018.

eVitabu - the solution

● An Android app
○ Android v5+, with v4 possible

● Easy to use interface
● Searchable

○ Lead to scale challenges

● Resources available offline
● Requires registration &

vetting

Android version distribution is a challenge. At the launch conference we were
providing the hardware, so could concentrate on Android 7 only. Since then we’ve
had prospective users contact us about using older devices, so we now support
Android 5. The app will run on Android 4 but that would require the security of the
central server to be reduced by enabling TLSv1.0 support. We’re looking at Android
usage statistics for Africa to determine the best course of action - devices aren’t
changed out every couple of years like they are in the West.

Users register for access to materials and get vetted by APF staff to ensure they’re
from known partners. A lot of the contributors are providing materials at discounted
rates (or free) on the agreement resources are only accessed by approved
individuals.

A lot of time will be spent away from an Internet connection so resources get
downloaded to the tablet or phone. During the launch conference (where we provided
a free Internet connection) some partners downloaded so many resources they didn’t
reconnect to our server for over 3 months.

More details about eVitabu are here: https://www.africanpastors.org/evitabu/ .

https://www.africanpastors.org/evitabu/

eVitabu - overview

Hurdles - connectivity: speed, cost & reliability

● Transfer rates can be sloooow
● Data is paid for by the MB

○ Same over here, but we have more disposable funds

● Connections may not be stable, leads to repeated
download attempts and increased costs

● Necessary to make downloaded data as small as
possible
○ A valid goal in any application, but more prominent here

The first version of the app’s APK was around 3MB but that later grew to 19MB for
reasons that I couldn’t determine. This increase was a significant problem,
particularly on a slow connection (I simulated this at home on a connection limited to
less than 10Mbps - it was painful watching the Play store upgrade the app).
Fortunately that’s now solved by use of Android App Bundles (
https://developer.android.com/platform/technology/app-bundle).

Connection reliability can lead to downloads corrupting or not completing at all. One
kick off meeting was plagued with this problem, with a number of reports of missing
resources - they all existed in the back end.

https://developer.android.com/platform/technology/app-bundle

Hurdles - allowing for scale

● Early versions of the app sent lots of requests
● Initially no caching
● Learning point: load test systems with realistic data

sets
○ Test systems of only 20 records aren’t the same!

● Initially no compression
○ We’re used to browsers automatically enabling Gzip

compression - your own app doesn’t

● Searching process was inefficient

Originally, each time the user changed activity in the app there was a new connection
to the server and a new download of XML. This was fine in early testing, with only a
handful of resources, but a real pain after we’d imported over two thousand. Add to
that the fact the XML being downloaded was not compressed and we had a runaway
problem that would be very costly for partners.

Changes were made to cache the XML response on the device for 5 minutes. This is
long enough to browse and select resources for download and the list of available
resources doesn’t change that regularly - this cache time could be increased. XML
data transfers were also compressed with Gzip, massively reducing download times
and sizes for the library’s metadata.

Searching originally downloaded a new copy of the XML every time a letter was
entered into the text box. That was a bad decision and hugely inefficient, something
we only noticed after bulk-loading a set of resources. The search now uses the
cached data and only begins searching after the third character has been entered.

I wrote a blog post, Allowing for scale, which goes into this in greater depth:
https://blog.jonsdocs.org.uk/2018/09/12/allowing-for-scale/ .

https://blog.jonsdocs.org.uk/2018/09/12/allowing-for-scale/

Hurdles - contextualisation

● I and my co-developers are mzungu - white people
● Developing from a Western context

○ Exposure to other apps and GUIs

● Difference in language
○ English is the common language, but simplified

● Icons & symbols may have different meanings

Wherever possible we’re looking to contextualise the interface so it makes more
sense in Africa. Feedback from our users is always valued and we know there’s
some areas that need to be adjusted to make the whole experience smoother.

English is used in a simplified form: no contractions (“cannot” rather than “can’t”) and
sentences are kept short.

If an icon isn’t immediately understood it’s important that it doesn’t cause offence.

Hurdles - supporting users

● It’s a long distance relationship!
● Email and WhatsApp used a lot
● Local partners assist at set up conferences

○ Sometimes they take short cuts

● Changes to the back end (e.g. the XML schema) must
be considered
○ Older versions of the app could be used for many years

○ Backward compatibility

Support was reasonably easy during the launch conference - I was physically with the
users along with a team of others that knew how to use eVitabu. Since that first
conference there’s been at least two more lead by the CEO - when I’ve not been
there. This brings challenges in supporting both the CEO and the end users at the
conference, not always achievable during the working day.

Shortcuts sometimes taken by local partners can lead to problems. For example, one
group decided they’d share the app via Bluetooth to save having to download the app
from the Play store. This caused issues as they were using an old version of the
APK, lacking performance and stability enhancements.

We planned the XML schema carefully to make sure it contained all the elements we
thought eVitabu would need for some time. The concern is that a partner could be
using a very old version of the app to connect to our back end infrastructure. While
we’d love them to upgrade, and we encourage them to update, the important thing is
that partners can download resources. Additionally, we’ve built the app to be tolerant
to schema changes - additional fields should be ignored if the app doesn’t know about
them.

Any questions?

Links and acknowledgements

● African Pastors Fellowship

https://africanpastors.org

● My blog

https://blog.jonsdocs.org.uk

I’d like to thank Mike, my original co-developer on this project.

Adam, my long time coding partner, has also contributed hours to

the project.

I’d also like to thank APF’s trustees for backing eVitabu, along with

our users for helping it grow.

https://africanpastors.org
https://blog.jonsdocs.org.uk

Links and acknowledgements

https://commons.wikimedia.org/wiki/File:Tablet_font_awesome.svg

https://www.needpix.com/photo/100665/computer-server-workstation-pc-hardware-linux-tux

https://commons.wikimedia.org/wiki/File:Tablet_font_awesome.svg
https://www.needpix.com/photo/100665/computer-server-workstation-pc-hardware-linux-tux

